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Article

Acquisition of numerical competency is imperative for 
individuals in contemporary society, both for quality of life 
and economic well-being, and low numeracy is a substan-
tial cost to nations (Butterworth, Varma, & Laurillard, 
2011). The newly released fifth edition of the Diagnostic 
and Statistical Manual of Mental Disorders (American 
Psychiatric Association, 2013) states that 5% to 15% of 
school-aged children may suffer from a specific learning 
disorder that may hamper the acquisition of numerical com-
petency. Developmental dyscalculia (DD) is one of those 
specific learning disorders, and it is characterized by impair-
ments in learning and remembering arithmetic facts and in 
executing calculation procedures (Butterworth, 2005).

Because of the high prevalence rate, which is estimated 
to be about 3% to 6% in the general population (Barbaresi, 
Katusic, Colligan, Weaver, & Jacobsen, 2005; Rubinsten & 
Henik, 2009; Shalev, 2007), it is of great importance to 
investigate the origin of DD. Although researchers gener-
ally agree that DD is partly caused by biological factors, 
research has generated mixed results concerning the partic-
ular neurocognitive profile and origin of DD. A review of 
prior studies suggests that different age groups, cutoff crite-
ria, and mathematical screening measures might account for 
this state of affairs. More specifically, some studies have 

used multifaceted test batteries as screening measures, tap-
ping aspects such as basic number knowledge, simple one-
digit arithmetic, and multidigit calculation (e.g., Piazza et 
al., 2010; Rousselle & Noël, 2007), whereas other studies 
have focused exclusively on arithmetic fact retrieval (e.g., 
Landerl, Bevan, & Butterworth, 2004; Mussolin, Mejias, & 
Noël, 2010). Furthermore, the cutoff criteria used in studies 
conducted during the past 10 years have ranged from the 
conservative criteria of 2.28th percentile used by Landerl 
et al. (2004) to the more common criteria at or below the 
15th percentile to classify children as having DD (e.g., 
Landerl, Fussenegger, Moll, & Willburger, 2009; Rousselle 
& Noël, 2007). Previous research has also displayed a large 
disparity in age range investigated across studies, ranging 
from 14 years in Mazzocco, Feigenson, and Halberda 
(2011) to 6 to 7 years in De Smedt and Gilmore (2011), and 
9 to 11 years is the most common age range (e.g., Mussolin 
et al., 2010; Piazza et al., 2010).
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Abstract
This study investigated if developmental dyscalculia (DD) in children with different profiles of mathematical deficits has 
the same or different cognitive origins. The defective approximate number system hypothesis and the access deficit 
hypothesis were tested using two different groups of children with DD (11–13 years old): a group with arithmetic fact 
dyscalculia (AFD) and a group with general dyscalculia (GD). Several different aspects of number magnitude processing 
were assessed in these two groups and compared with age-matched typically achieving children. The GD group displayed 
weaknesses with both symbolic and nonsymbolic number processing, whereas the AFD group displayed problems only 
with symbolic number processing. These findings provide evidence that the origins of DD in children with different profiles 
of mathematical problems diverge. Children with GD have impairment in the innate approximate number system, whereas 
children with AFD suffer from an access deficit. These findings have implications for researchers’ selection procedures 
when studying dyscalculia, and also for practitioners in the educational setting.
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The variability of selection procedures is a critical issue 
because it might result in diverse samples of children with 
DD across studies, which probably explains the inconsistent 
findings. Diverse samples are, however, consistent with the 
increasingly recognized position that DD is a heterogeneous 
condition, where children with DD display different profiles 
of mathematical deficits (De Visscher & Noël, 2013; Geary, 
Hoard, & Hamson, 1999; Jordan & Montani, 1997; Temple, 
1991; Von Aster & Shalev, 2007). Number processing is rep-
resented and reliant on cortical activity in several brain areas 
connected through complex distributed networks; it is there-
fore likely that there are numerous vulnerable sites in the 
processing chain that are susceptible to deviations, which 
ultimately may impair number processing (Rubinsten & 
Henik, 2009). For instance, the intraparietal sulcus (IPS) has 
been found to be involved during nonsymbolic processing, 
whereas symbolic processing involves the IPS, angular 
gyrus (Price & Ansari, 2011), and inferior frontal gyrus 
(Nieder, 2009). Moreover, these areas are involved not only 
during number processing but also in other mental functions, 
such as attention (Henik, Rubinsten, & Ashkenazi, 2011), 
and are connected through white matter tracts that inciden-
tally also have been found to be implicated in DD 
(Rykhlevskaia, Uddin, Kondos, & Menon, 2009).

Although DD can be divided into different subtypes with 
respect to comorbidities, such as attention-deficit/hyperac-
tivity disorder (ADHD) and reading disabilities, it is also 
likely that “pure” DD itself is subject to heterogeneous sub-
types. A recent case study of a woman with a severe arith-
metic fact retrieval deficit simultaneously showed intact 
nonsymbolic number processing skills usually associated 
with DD. The authors suggested that arithmetic fact dyscal-
culia (AFD) might be one subtype of pure DD (De Visscher 
& Noël, 2013).

Based on this position that DD might arise from multiple 
brain dysfunctions and cognitive deficits, and that the cardi-
nal deficits of DD are difficulties with arithmetic fact 
retrieval and execution of calculation procedures (Andersson, 
2010; Jordan & Hanich, 2003; Jordan, Hanich, & Kaplan, 
2003; Jordan, Kaplan, & Hanich, 2002; Russell & Ginsburg, 
1984), the aim of this study was to investigate if DD in chil-
dren with different profiles of mathematical deficits have the 
same or different cognitive origins. This was accomplished 
by examining children with severe arithmetic fact retrieval 
deficits but normal calculation ability, corresponding to the 
suggested subtype of DD by De Visscher and Noël (2013), 
and children with severe deficits in arithmetic fact retrieval 
and calculation ability, corresponding to the conventional 
notion of DD. These two subgroups were compared with 
children consisting of age-matched typical achievers regard-
ing math performance.

Although the underlying cause of DD remains unre-
solved, different hypotheses have been proposed, and two 
of them were tested and contrasted in the present study.

The Defective ANS Hypothesis

Extensive and fruitful research carried out during the past 25 
years demonstrates that humans have an innate preverbal 
ability to represent and manipulate quantities that constitutes 
the foundation for the acquisition of the symbolic number 
system used for learning formal arithmetic (Dehaene, 2011; 
Gallistel & Gelman, 1992; Gelman & Butterworth, 2005; 
Piazza, 2010; Wynn, 1992, 1995; Xu & Spelke, 2000). 
According to some researchers, DD in children is caused by 
impairment in this innate number ability (Dehaene, 2011; 
Gallistel & Gelman, 1992; Gelman & Butterworth, 2005; 
Piazza, 2010; Wynn, 1992, 1995; Xu & Spelke, 2000). More 
specifically, they propose that the deficit is located in the 
approximate number system (ANS) responsible for repre-
senting large and approximate numbers via a logarithmic 
analogue mental number line (Dehaene, 2011; de Hevia, 
Vallar, & Girelli, 2006; Feigenson, Dehaene, & Spelke, 
2004; Le Corre & Carey, 2007). In this system, numerosities 
are mapped onto the number line, and the increasing magni-
tudes are represented in ascending order, from left to right, 
whereas each number is associated with a spatial location 
(de Hevia et al., 2006; Previtali, de Hevia, & Girelli, 2010). 
A main feature of the ANS is its imprecision, which is due to 
its logarithmic nature, that is, larger numbers are closer 
together than smaller numbers (Bugden & Ansari, 2011; 
Dehaene, 1992; de Hevia et al., 2006; Feigenson et al., 
2004). However, it is believed that with increasing experi-
ence with the symbolic system children learn to compensate 
for the logarithmic nature of the symbolic ANS or that the 
ANS is sharpened through the acquisition of the exact sym-
bolic number system (Feigenson et al., 2004; Halberda & 
Feigenson, 2008; Mundy & Gilmore, 2009).

The Access Deficit Hypothesis

Rousselle and Noël (2007) have proposed another domain 
specific account of DD in children, which they call the 
“access deficit hypothesis.” This hypothesis states that DD in 
children is related not to problems with processing of numer-
osities, but rather with accessing magnitude information 
from symbols (i.e., numerals). Thus, the main causal element 
in DD is attributable to the connection between symbolic 
numbers and innate magnitude representations (Rousselle & 
Noël, 2007; also see Wilson & Dehaene, 2007). It follows 
from this hypothesis that children with DD should display 
problems only with symbolic (numerals) number magnitude 
processing tasks but perform within normal range on non-
symbolic tasks because only the former type of task requires 
access to the underlying magnitude representations of Arabic 
numerals (Rousselle & Noël, 2007; also see Wilson & 
Dehaene, 2007). Considering the innate ANS, in contrast, 
impairment in this system should affect all number mag-
nitude-processing tasks (nonsymbolic and symbolic) and 
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influence number magnitude processing effects (e.g., dis-
tance and problem size effects) because they all reflect the 
logarithmic and analogue nature of the ANS (Piazza, 2010; 
Rousselle & Noël, 2007; Wilson & Dehaene, 2007).

Research in Relation to the Defective ANS 
Hypothesis and the Access Deficit Hypothesis
There is ample evidence showing that children with DD 
perform poorly when they have to select the numerically 
larger of two Arabic numerals, which requires activation of 
the magnitude representations associated to the two numer-
als (Iuculano, Tang, Hall, & Butterworth, 2008; Landerl 
et al., 2004; Landerl et al., 2009; Landerl & Kölle, 2009; 
Rousselle & Noël, 2007). There are a couple of ways of 
interpreting this; one could regard these results as an indica-
tion that children with DD perform poorly because of a con-
nection deficit between the symbolic and nonsymbolic 
systems, or one could attribute it to a defective ANS.

Other interesting aspects of the numerical comparison 
task are the manipulation of the numerical distance between 
the numerals (distance effect) and the magnitude of the 
pairs to be compared (problem size effect). The distance 
effect refers to the fact that the choice of the larger of two 
numerals is faster when the numerical distance is large 
compared to small (Moyer & Landauer, 1967). The prob-
lem size effect connotes that the selection of the larger of 
two numerals is performed faster when the numerals are 
small (3 vs. 4) than when they are large (9 vs. 8). These two 
effects are considered to demonstrate that the magnitude 
representations associated with numerals and counting 
words are represented mentally as approximate analogue 
magnitudes (e.g., mental number line). Since the distance 
and problem size effects are reduced with ontogenetic 
development in typical children (Holloway & Ansari, 2008, 
2009; Landerl & Kölle, 2009), it has been considered a 
fruitful approach to examine these effects to identify chil-
dren with DD, which might then be interpreted as a defi-
ciency in the ANS (Geary, Hoard, Byrd-Craven, Nugent, & 
Numtee, 2007; Geary, Hoard, Nugent, & Byrd-Craven, 
2008; Landerl et al., 2009).

Results from studies investigating the aforementioned 
effects in children with DD have been mixed. For example, 
Landerl and colleagues (Landerl et al., 2009; Landerl & 
Kölle, 2009) and Ashkenazi, Mark-Zigdon, and Henik 
(2009) found that children with DD display the distance 
effect on one-digit comparison tasks to the same extent as 
the controls. In a more recent study, by Mussolin et al. 
(2010), the DD children demonstrated a larger distance 
effect on both symbolic as well as nonsymbolic magnitude 
comparison tasks. Furthermore, Ashkenazi et al. demon-
strated larger distance effect as well as a larger problem 
size effect compared with controls on a two-digit numeri-
cal comparison task.

These findings are congruent with the defective ANS 
hypothesis because the results suggest that the ANS in chil-
dren with DD are less precise and more logarithmic, result-
ing in increased difficulties with distinguishing and 
comparing numerals and numerosities (Ashkenazi et al., 
2009; Geary et al., 2008; Landerl et al., 2009; Mussolin et 
al., 2010; Rousselle & Noël, 2007). Strong evidence for a 
deficit in the ANS has been provided by a number of studies 
showing that children with DD perform poorly on nonsym-
bolic number discrimination or estimation (Landerl et al., 
2009; Mazzocco et al., 2011; Mejias, Mussolin, Rousselle, 
Grégoire, & Noël, 2012; Mussolin et al., 2010; Piazza et al., 
2010; Price, Holloway, Räsänen, Vesterinen, & Ansari, 
2007). Piazza et al. (2010) and Mazzocco et al. (2011) esti-
mated the acuity, that is, the precision and discriminability 
of the ANS by computing Weber fractions (W) for each 
child. Piazza et al. concluded that the DD children displayed 
a defective ANS, as their mean W value of .34 was consid-
erably higher than their age-matched controls’ W value of 
.25 and was comparable to that of the 5-year-old children 
participating in the study. Mazzocco et al. (2011) replicated 
Piazza et al.’s findings and observed that ninth graders with 
DD displayed impairment in the acuity of the ANS as indi-
cated by their high W value. It should be noted, however, 
that some studies have found that children with DD perform 
poorly only on symbolic number discrimination, not on 
nonsymbolic number discrimination, which is in line with 
the access deficit hypothesis (De Smedt & Gilmore, 2011; 
Iuculano et al., 2008; Landerl & Kölle, 2009; Rousselle & 
Noël, 2007).

Additional support for a domain-specific number deficit 
in DD is provided by studies using the number line estima-
tion task (see Siegler & Opfer, 2003). These studies show 
that children with DD have problems developing a linear 
mental number line representation of good quality (Geary et 
al., 2007; Geary et al., 2008; Landerl et al., 2009). However, 
as this task assesses the ANS, the symbolic number system, 
and the connection between them (LeFevre et al., 2010; 
Piazza, 2010; Siegler & Opfer, 2003), these findings pro-
vide support for both the defective ANS hypothesis and the 
access deficit hypothesis.

To summarize, available research provides robust empir-
ical support for a number processing deficit in children with 
DD. However, the findings are inconclusive with respect 
to the hypotheses outlined above, and especially in rela-
tion to children with different profiles of mathematical 
deficits. So far only De Visscher and Noël (2013) have 
tested hypotheses regarding the origin of DD in children 
with specific profiles of mathematical deficits. They found 
an interference-related deficit in a case of pure arithmetic 
fact retrieval dyscalculia, but no support for the defective 
ANS hypothesis. In their case study, De Visscher and Noël 
(2013) argue that one possible cause of AFD might be 
attributed to a heightened sensitivity to interference, which 
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would hamper the ability to memorize arithmetic facts in 
the first place. One tentative hypothesis of the neurological 
correlate of AFD is that individuals with this profile have 
impaired functional connectivity between the hippocampus 
and angular gyrus, which is believed to be responsible for 
memory formation of arithmetic facts (De Visscher & Noël, 
2013). Ansari (2008) also suggested that the angylar gyrus 
subserves automatic mapping between mathematical sym-
bols and their semantic referents, which invites the hypoth-
esis that children with AFD also might have problems in 
accessing the nonsymbolic magnitude representations, even 
if the representations themselves are intact (i.e., the access 
deficit hypothesis).

Thus, further research is warranted to deepen our under-
standing of the underlying causes of DD in children with 
distinct profiles of mathematical deficits.

The Present Study

The aim of present study was to investigate if DD in chil-
dren with different profiles of mathematical deficits has the 
same or different origins. More specifically, the defective 
ANS hypothesis and the access deficit hypothesis were 
tested using one group of children with AFD and one group 
with general dyscalculia (GD).

The participating children were between 10 and 13 years 
of age. The rationale behind choosing children in this age 
range was to ensure that mathematical deficits of children 
were not due to a developmental delay and that they had ade-
quate experience with numerals and arithmetic. Moreover, 
since most prior studies have focused on children aged 9 to 
10, it would be interesting to investigate whether older chil-
dren with DD display similar cognitive profile as younger 
children. The following hypotheses were predicted:

1. If the defective ANS hypothesis is correct, children 
with GD and/or AFD should display problems with 
estimation tasks, such as dot magnitude discrimina-
tion, in conjunction with symbolic number tasks, 
because the ANS is a prerequisite and foundation for 
the development of the symbolic system (cf. Wilson & 
Dehaene, 2007), and therefore they should show a 
greater distance effect as well as the problem size effect.

2. According to the access deficit hypothesis, children 
with GD and/or AFD should display intact abilities 
on nonsymbolic tasks but have difficulties with 
symbolic number tasks.

Method

Participants

A total of 77 children attending 12 different schools partici-
pated in the study. Of these children, 11 children were in 

their fourth year, 41 were in their fifth year, and 25 were in 
their sixth year of schooling. The total sample had a mean 
age of 11 years, 9 months (range = 10 years, 3 months to 13 
years, 0 months). All children had Swedish as their primary 
language, had normal or corrected-to-normal visual acuity, 
and had no hearing loss. The present study employed a sim-
ilar approach to classify children as having DD as used by 
Andersson (2010). The first selection criterion was that the 
child received special education instruction in mathematics 
at the time of the study. To receive special instructions, the 
child must have displayed poor achievement and poor skill 
development during a period of time. Each teacher respon-
sible for the special instructions was also asked to identify 
and exclude children with diagnosed ADHD and children 
whom he or she believed might have undiagnosed ADHD 
or mathematical deficits due to other neurological distur-
bances. To identify children with AFD or GD, a paper-
and-pencil multidigit arithmetic calculation task and 
computer-administered arithmetic fact retrieval task were 
used (see description below). The second selection criterion 
used to identify children with GD was that the child’s scores 
on the arithmetic fact retrieval task (GD: 1.00 ± 1.50 per-
centile) and the calculation tasks (GD: 1.00 ± 0.50 percen-
tile) were at or below the 5th percentile of an age-matched 
norm group (Träff, 2012). To be classified as AFD, the 
child’s scores on the arithmetic fact retrieval task (AFD: 
1.00 ± 1.50 percentile) had to be at or below the 5th percen-
tile of an age-matched norm group and the scores on the 
calculation tasks (AFD: 21.50 ± 3.50 percentile) at or above 
the 15th percentile. The typical achiever (TA) children were 
randomly selected from the same classrooms as the AFD 
and the GD children. The criteria were that the child did not 
receive any special instruction and that the child’s scores on 
the arithmetic fact retrieval task (TA: 50.00 ± 17.00 percen-
tile) and the calculation tasks (TA: 71.00 ± 23.50 percentile) 
were at or above the 15th percentile. In all, 16 children fit 
the criteria for inclusion in the AFD group, 34 children were 
included in the GD group, and 27 children were included in 
the TA group.

In addition to the arithmetic tasks, the following tasks 
were administered to tap general cognitive abilities and 
reading skill: reading comprehension task, verbal and visual 
working memory, Raven’s Standard Progressive Matrices 
Test (Sets B, C, and D; Raven, 1976), color naming, and 
color Stroop task (inhibition control). More detailed 
descriptions of these tasks are presented below. Background 
information and results on the tasks are displayed for each 
ability group in Table 1.

A one-way analysis of variance (ANOVA) and Tukey–
Kramer post hoc test displayed that the GD group (25.00 ± 
22.19 percentile) but not the AFD group (54.50 ± 26.10 per-
centile) displayed lower raw scores on Raven’s test, F(2, 
74) = 13.03, p < .001, compared to the TA group (75.00 ± 
26.66 percentile). Due to this, ANCOVAs with Raven’s test 

 at UNIV CALIFORNIA SAN DIEGO on November 18, 2014ldx.sagepub.comDownloaded from 

http://ldx.sagepub.com/


Skagerlund and Träff 5

as a covariate were used to compare the three groups on 
measures of reading, verbal working memory, visuospatial 
working memory, inhibition control, color naming, and 
reading. These analyses displayed that both the AFD and 
GD groups displayed poorer performance on reading, F(2, 
73) = 22.26, p < .001, and color naming, F(2, 73) = 8.06, 
p = .001, compared with the TA group. Furthermore, the 
GD group also performed slower than the TA group on the 
inhibition control task, F(2, 73) = 5.00, p = .009. The AFD 
and GD groups’ performances on the verbal and visuospa-
tial working memory tasks were equal to that of the TA 
group. However, including the reading task as an additional 
covariate eliminated the poorer performance of the GD 
group on the inhibition control measure and the slower 
color naming performance of the GD and AFD group.

Screening Tests

Raven’s Standard Progressive Matrices Test. This is a well-
known and frequently used test of nonverbal logical reason-
ing and consists of a series of visual pattern designs with a 
piece missing (Raven, 1976). The task is to select the cor-
rect piece to complete the designs from a number of options 
(six to eight) displayed beneath the design. The test includes 
five sets of designs (A, B, C, D, E) with 12 items per set. 
Only Sets B, C, and D were used in this study. Each child 
received a test booklet, and after two practice items had 
been performed, the children individually completed the 36 
items at their own pace. The Cronbach’s alpha calculated 
on the three sets was .87.

Reading task. The test consisted of 12 short stories to be read, 
followed by a multiple-choice questionnaire related to each 
story assessing the children’s general reading comprehension 
level (Malmquist, 1977). The test contained 33 questions, 
and all questions were to be answered within a time limit of 4 
min. The total number of correct answers was the dependent 
measure. The split-half reliability after Spearman–Brown 
correction for this task is .97 (Malmquist, 1977).

Arithmetic fact retrieval and arithmetic calculation. The arith-
metic fact retrieval task was administered via a computer 
and consisted of 12 addition problems (e.g., 9 + 5; 4 + 6), 
12 subtraction problems (8 – 4; 6 – 2), and 12 multiplica-
tion problems (4 × 5; 7 × 3). The three arithmetic opera-
tions were administered in separate blocks. One problem at 
a time was presented horizontally on the computer screen. 
When the child announced that he or she was ready, the 
experimenter pressed the mouse button and a problem was 
displayed on the computer screen until the child had 
responded. A timer started at the onset of the problem and 
was stopped when the experimenter pressed the mouse but-
ton after the child had given an oral response to the prob-
lem. The child was instructed to provide an answer 
immediately by remembering what the answer was and 
was encouraged to guess if he or she failed to do so. To 
ensure that the task tapped fact retrieval rather than calcu-
lation, only the number of correctly solved problems with 
response times within 3,000 ms was used as the dependent 
measure (cf. Russell & Ginsburg, 1984). The Cronbach’s 
alpha calculated on the current sample using the three 
blocks was .94.

Arithmetic calculation ability was tapped using three 
paper-and-pencil tasks designed so that the test items 
became successively more difficult. All three tasks were 
administered in groups of four children, the number of cor-
rectly solved problems was the dependent measure, and the 
combined maximum score was 32. The same test procedure 
(i.e., instructions, paper and pencil, scoring procedure) was 
used in all three subtasks. In the first calculation subtask, 
the child was asked to solve five addition problems and five 
subtraction problems (e.g., 568 + 421, 658 – 437, 4,203 + 
5,825) in 8 min. The problems were presented horizontally, 
and the child responded in writing. All problems except two 
involved regrouping (i.e., carrying or borrowing). The chil-
dren could solve the problems in any way according to their 
own preference, but only with paper and pencil at their dis-
posal. The task was administered in groups of four children. 
Subtask 2 consisted of 12 arithmetic equations presented 

Table 1. Descriptive Data (Raw Scores) for Children in the AFD Group, the GD Group, and the TA Group.

AFD GD TA

 M SD M SD M SD

n (number of boys) 16 (4) 34 (19) 27 (11)  
Mean age (in months) 142 6.16 141 7.51 142 9.76
Reading task 15.63 6.41 12.53 4.81 22.19 4.00
Verbal working memory 3.69 0.77 3.25 0.76 3.91 1.00
Visuospatial working memory 3.38 1.20 3.16 1.00 3.83 1.17
Inhibition control 20.78 14.40 27.18 13.85 15.98 6.30
Color naming 54.56 14.67 55.47 13.87 41.74 7.13

Note. AFD = arithmetic fact dyscalculia; GD = general dyscalculia; TA = typical achievers.
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horizontally (e.g., 61 + ___ = 73; ___ – 500 = 50). The task 
was to fill in the right number so the equation was correct. 
The child had 7 min to solve the equations. In the third sub-
task, the child was presented with an answer and two to four 
numbers that had to be combined with one to three arithme-
tic operators (addition, subtraction, multiplication) to obtain 
the predetermined answer. If the answer was 30 and the 
three numbers were 10, 50, 90, a correct combination would 
be 90 – 10 – 50. The child had 5 min to solve 10 problems 
(e.g., 27, 113 = 140; 25, 19, 11 = 5). The Cronbach’s alpha 
calculated on the three subtasks was .89.

The arithmetic tasks (fact retrieval, calculation) have 
been standardized and normed on 110 fourth graders, 110 
fifth graders, and 110 sixth graders sampled from 20 urban 
schools. The mean socioeconomic status of the samples was 
primarily middle class but varied from lower middle class 
to upper middle class. The data were collected in the spring 
semester from January to May. The arithmetic calculation 
tasks were administered in groups of four children, whereas 
the fact retrieval task was administered individually. 
Cronbach’s alpha coefficients for the three calculations 
tasks calculated on children aged between 9 and 11 years 
ranged from .74 to 82, whereas the Cronbach’s alpha coef-
ficient for the fact retrieval task calculated on all 36 trials 
was .87.

Listening span task. This task measures the participants’ ver-
bal working memory capacity and was administered to con-
trol for the influence of working memory capacity on 
arithmetic abilities. The participant was orally presented 
with sequences of three-word sentences, and the initial task 
was to determine whether the sentence makes semantic and 
syntactic sense or not. Thus, the participant was to respond 
yes if the sentence made sense (e.g., “The rabbit was fast”) 
or “no” if the presented sentence was absurd (e.g., “The frog 
played the piano”). The participant was also told, prior to the 
first trial, to try to remember the first word in each sentence 
regardless of whether the sentence was absurd or not. After 
orally answering “yes” or “no,” the next sentence was pre-
sented. The first span size level was 2, and therefore the 
number of sentences read to the participants was also 2, after 
which the participant had to recall in correct serial order the 
target words. The next span size was 3, and the number of 
sentences and target words were of equal quantity as the 
span size, after which another response phase followed. The 
span size ranged from 3 to 7, and there were two trials for 
each span size. The longest correctly recalled list was used 
as the dependent measure (maximum score = 7.5), and the 
participant had to respond correctly whether the sentences 
were correct or not. Half of the sentences were normal and 
half of the sentences were absurd. Each sentence was read to 
the participant, word by word, at a rate of approximately one 
word per 0.5 s. The Spearman–Brown reliability calculated 
between the A and B trials was r

sh
 = .90.

Visual matrix task. This computerized visuospatial working 
memory task was administered to control for the influence 
of working memory capacity on arithmetic abilities, and 
consists of a matrix of squares, where each square was 
sized 2.5 × 2.5 cm. The number of squares in each matrix 
varied and increased as to make it more difficult for each 
successful trial. Initially, the matrix consisted of 3 × 3 
squares, where some squares contained two black dots, and 
the participant was at first to estimate whether these dots 
were of equal size or not and subsequently press asterisk 
key if they were equal or the A key if they were not. The 
participant had 3 s to respond, after which two additional 
dots appeared in another square while the former two dots 
were still visible. Once again the participant had to decide 
whether these two dots were of equal size and respond 
accordingly within 3 s. In addition to making these judg-
ments, the participant had to remember in which squares 
the dots had been presented because the matrix disappeared 
after a given sequence of dots had been presented, and the 
participant had to mark on piece of paper containing an 
identical matrix as had been previously shown in which 
squares the participant believed the dots had been shown. 
The initial matrix had 3 × 3 squares, as mentioned above, 
in which two squares contained black dots, resulting in a 
trial of span size 2. The following matrix had 3 × 4 squares 
in which three squares black dots appeared, giving a span 
size of 3. The third, fourth, fifth, and sixth levels had 16, 
20, 25, and 30 squares, respectively, in which the third 
level had 4 dots, the fourth level had 5 dots, the fifth level 
had 6 dots, and the sixth level had 7 dots appearing within 
the matrix. Thus, this task measured the span size between 
2 and 7 items. For each span size, there were two matrices 
presented to the participants. The most complex matrix 
correctly recalled (i.e., locations of dots) was used as the 
dependent measure. However, the participants also had to 
respond correctly to each and every process question (i.e., 
the size decision) to receive points for the matrix. The max-
imum score on this task was 7.5. The Spearman–Brown 
reliability coefficient was r

sh
 = .74.

Color naming and color Stroop task. Color naming is a type of 
rapid automatized naming (RAN) task (Denckla & Rudel, 
1976) and is used as a control task because it involves 
behavioral responses involved in other numerical tasks, 
such as digit naming, where the RAN task is used to control 
for lexical speed of access to color names. Performance on 
this task is also used as a measure of general speed and used 
in ANCOVAs to control for cognitive speed in number pro-
cessing tasks where speed is of the essence. This task con-
sisted of two conditions, a color naming condition and a 
color Stroop incongruent condition. The first condition, 
color naming, was administered on two separate sheets of 
A4 paper, where strings of “XXX” (Arial 22-point font) 
were printed in different colors, red, green, blue, black, or 
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yellow, and in two separate columns for a total of 30 XXX 
strings. The participant was instructed to name the color in 
which the strings were printed as fast as possible without 
making any errors. A stopwatch was used to measure the 
total response time used as the performance measure. The 
combined response times for the two sheets of paper were 
used as a measure of speed of access to semantic informa-
tion in long-term memory (Temple & Sherwood, 2002). 
The Spearman–Brown reliability calculated between the 
first trial and second trial was r

sh
 = .90.

In the color Stroop incongruent condition, the stimuli 
consisted of 30 color words (red, green, blue, black, and 
yellow); the words named a color incongruent with the ink 
colors in which they were printed (e.g., the word “RED” in 
green ink). The task was to name aloud as quickly as pos-
sible the ink color in which each word was printed while 
ignoring the word’s identity. A measure of inhibition control 
was obtained by subtracting the mean response time for the 
two color naming trials from the total response time for the 
incongruent condition (e.g., incongruent – naming of color 
XXX). The correlation between the incongruent condition 
and the color naming condition was r = .77.

Experimental Number Processing Tasks

Nonsymbolic number discrimination. This task taps into the 
ANS, requiring participants to quickly discriminate between 
two sets of dots (Piazza et al., 2010; Price et al., 2007). Two 
sets of black dots, randomly scattered, ranging from 2 to 8 
dots within each set, were displayed simultaneously on a 
computer screen. Each singular dot had a diameter of 9 mm, 
and the sets were separated by a vertical line 2 mm thick. 
The objective in this task was to estimate and decide, as 
quickly as possible while trying to minimize the error rate, 
which of the two sets contained more dots. The exposure 
time of the stimuli (i.e., the sets of dots) was dependent on 
the response time of the participant. Thus, the sets were 
visually exposed to the participant until the participant 
responded by pressing either the A key, to indicate that the 
left set was more numerous, or the asterisk key, to indicate 
that the right set was more numerous. The key mappings 
were evidently assigned to spatially correspond to the visual 
arrays of dots. Prior to each stimulus item, the screen was 
blank for 1,000 ms. Five different set comparisons were 
used: 3 versus 4 dots, 4 versus 5 dots, 5 versus 6 dots, 5 
versus 7 dots, and 6 versus 8 dots. Each set comparison was 
presented three times, which resulted in a net sum of trials 
to 15. Right before the actual trials, the participants were 
given four practice trials to familiarize themselves with the 
conditions and the general nature of the task. Since the stim-
ulus exposure lasted until the participants made a decision 
and pressed the corresponding key, the error rate was very 
low (3%). Hence, only the response time was used as the 
dependent measure. The Cronbach’s alpha reliability 

coefficient calculated on the current sample was established 
to be .90.

One-digit magnitude comparison. Since children with DD 
tend to perform poorly when they have to select the numeri-
cally larger of two Arabic numerals, which requires activa-
tion of the magnitude representations associated to the two 
numerals (Iuculano et al., 2008; Landerl et al., 2004; 
Landerl et al., 2009; Landerl & Kölle, 2009; Rousselle & 
Noël, 2007), we administered this task together with the 
nonsymbolic number discrimination task to investigate the 
mapping of the ANS and the symbolic system to see which 
aspect of number processing may be implicated or intact in 
the different groups.

Two Arabic one-digit numerals ranging from 1 to 9 
(printed in Arial 40-point font) were simultaneously and 
horizontally displayed on a computer screen, and the cen-
ter-to-center distance between the two numerals was 10 
mm. The objective in this task was to decide which of the 
two numerals was the numerically larger one and respond 
with either the A key, corresponding to the left numeral, or 
the asterisk key, corresponding to the right numeral, which 
is consistent with prior tests in the battery, and the rationale 
behind the key mapping is evidently the same. Before each 
trial, a fixation cross was displayed for 1,000 ms, after 
which two digits were presented and remained exposed to 
the participant until he or she pressed a button. Two numeri-
cal distances were used, 1 (e.g., 2-3, 5-6) and 4 to 5 (e.g., 
1-6, 4-9, 3-7), and each pair was presented twice, resulting 
in a total of 32 trials. The response times and errors were 
registered for each trial by the software program, and only 
response times for correct responses were recorded and 
used in the analysis. Also, responses in which the response 
times were less than 200 ms were discarded and considered 
guesses or false starts (< 0.5% of all trials), and response 
times exceeding 2 SD of a participant’s mean response time 
were excluded as well (cf. Ashkenazi et al., 2009; Landerl 
& Kölle, 2009). The remaining correct responses within 
that time interval were used to calculate a mean response 
time for each condition. The mean response times and 
response accuracy were pooled into inverse efficiency mea-
sures for each participant; this measure was calculated by 
dividing the mean response time by the proportion of cor-
rect responses (i.e., accuracy; see Iuculano et al., 2008). The 
Spearman–Brown reliability calculated between the two 
numerical distance conditions (i.e., 1 and 4–5) was r

sh
 = .87.

Two-digit magnitude comparison. This task was essentially 
identical to the one-digit numerical magnitude comparison 
task described above, with the only exception and concep-
tual difference being that the stimuli now consisted of two-
digit pairs rather than one-digit pairs. The numerical 
distance between the pairs was either 1 or 5 (e.g., 21-22, 
46-47, 31-36, 54-59). The Spearman–Brown reliability 

 at UNIV CALIFORNIA SAN DIEGO on November 18, 2014ldx.sagepub.comDownloaded from 

http://ldx.sagepub.com/


8 Journal of Learning Disabilities 

calculated between the two numerical distance conditions 
(i.e., 1 and 5) was r

sh
 = .90.

One- and two-digit naming. The object of this task was, as the 
name implies, to quickly name presented numerals. Two 
sheets of paper were used in this experiment, and in the one-
digit condition seven rows of the numerals 1 to 9 was 
printed in black ink (Times 28-point font). Each numeral 
appeared once in every row, resulting in a 63 numerals in 
all. The participant was told to name each numeral as fast as 
possible without making any errors. Throughout the trial, a 
stopwatch was used to measure the total time it took for the 
participant to name all the 63 numerals, and if any error was 
made by the child, the experimenter registered it accord-
ingly. The mean response time it took for the participant to 
name all the numerals was used as the dependent measure. 
The two-digit numeral condition consisted of six rows and 
27 numerals, and each numeral appeared twice. The order 
of presentation was identical for all participants, beginning 
with the one-digit condition with the two-digit condition 
administered immediately thereafter. The correlation 
between the one-digit numeral condition and the two-digit 
numeral condition was r = .76.

Number line estimation task. This task was used to tap the 
symbolic mental number line that rests on the ANS; how-
ever, the task also taps the symbolic system and the map-
ping between them (Geary et al., 2007; LeFevre et al., 2010; 
Piazza, 2010; Siegler & Opfer, 2003; Von Aster & Shalev, 
2007). The task was to indicate with a pencil where a par-
ticular number would go on a 0 to 1,000 number line, simi-
lar to the procedure used by Landerl et al. (2009). The 
decision to use the 0 to 1,000 line was made due to the sug-
gestion by Booth and Siegler (2008) that children shift to a 
linear number line estimation of 0 to 1,000 between second 
and fourth grades. The material consisted of a booklet with 
9 pages with two horizontal 21 cm number lines on each 
page. Each one of the 16 experimental problems had the 
number 0 printed at the left end of the line and the number 
1,000 printed at the right end of the line. The number to be 
estimated was presented 2 cm above the center of the line. 
The children were first presented with two demonstration 
and practice problems (on page 1) that had the number 0 
printed at the left end of the line and the numbers 10 and 
500, respectively, printed at the right end of the line. After 
the two demonstration and practice problems, the children 
were instructed to solve the remaining problems in the same 
way as the demonstration and practice problems. The 16 
numbers used were 2, 7, 12, 19, 28, 71, 86, 103, 230, 390, 
475, 582, 690, 754, 810, and 962. Each child received one 
of four presentation orderings of the numbers, with the 
orderings counterbalanced. Accuracy of estimates in rela-
tion to a perfect linear function (i.e., percentage absolute 
error) was used as the dependent measure. Each child’s 

percentage absolute error for each item was calculated by 
dividing the difference between the target numeral/number 
and the estimated numeral/number with the scale of the 
number line (number estimate – actual number / scale of 
number line). The mean of 16% absolute errors was used as 
a measure of the child’s estimation accuracy, that is, the 
quality of the child’s symbolic mental number representa-
tional system. The present Cronbach’s alpha coefficient was 
established to be .90.

General Procedure

The study was conducted over two separate sessions, each 
lasting approximately 120 min and including a break mid-
session, both performed within a temporal window of one 
month. The two sessions were divided into one group ses-
sion and one individual test session, where all the tests were 
administered in the same order for all participants in the 
study. Instructions regarding the tasks were given orally, 
although they were read aloud from a printed manuscript to 
ensure that every participant was given identical informa-
tion. After instructions were provided and prior to the test-
ing phase, at least one practice trial for each test was 
performed to eliminate any misconceptions about the nature 
of the upcoming task. The tasks that were administered 
through a computer were run on an Apple PowerMac™ lap-
top, and the presentation software was SuperLab PRO 4.5. 
The individual test session contained the following tasks: 
visual matrix span, color naming/Stroop, nonsymbolic 
number discrimination, listening span, numerical magni-
tude comparison, and number naming. During the group 
session, the following tasks were administered: screening 
test of arithmetic calculation, Raven’s Standard Progressive 
Matrices, arithmetic problem solving (not reported here), 
screening test of reading, and number line estimation.

Results

ANCOVAs were primarily used to test the stipulated 
hypotheses, although occasional ANOVAs were used as 
well. The Tukey–Kramer test was used as a post hoc testing 
procedure. Performances (raw scores) on Raven’s test and 
the reading task were used as a covariates in all ANCOVAs 
to control for group differences in fluid IQ and reading, 
which have been demonstrated above. Means and standard 
deviations for all tasks used in the study for the AFD, GD, 
and the TA groups are displayed in Table 2.

Nonsymbolic Number Discrimination

An ANCOVA with IQ and reading as covariates and post 
hoc testing revealed that the GD group performed signifi-
cantly slower than the TA group on the nonsymbolic num-
ber discrimination task, F(2, 72) = 3.74, p = .029, partial 
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η2 = .09, whereas the AFD group performed on par with the 
TA group (p > .05). To examine if the slower performance 
of the GD group might have arisen from a general slowness 
as indicated by their performance on the color naming task, 
a second ANCOVA was computed with this task as an addi-
tional covariate. Controlling for performance on the color 
naming task as well as IQ and reading did not eliminate the 
slower performance of the GD group, F(2, 71) = 3.33, p = 
.043, partial η2 = .08.

Digit Naming

An ANCOVA with IQ as a covariate performed on the one-
digit naming task revealed a significant group effect, F(2, 
73) = 8.65, p < .001, partial η2 = .19. The Tukey–Kramer 
tests showed that the GD group performed slower than the 
TA group, but the AFD group performed as fast as the TA 
group. However, when reading was included as an addi-
tional covariate, the group effect disappeared (p > .05).

An ANCOVA with IQ and reading as covariates and post 
hoc testing performed on the two-digit naming task showed 
that the AFD group performed as fast as the controls (p > 
.05), whereas the GD group performed slower than the con-
trols, F(2, 72) = 3.67, p = .03, partial η2 = .09, but including 
performance on the color naming task as a covariate in 
addition to IQ and reading eliminated the slower perfor-
mance of the GD group (p > .05).

Digit Magnitude Comparison

Scores on the one-digit and two-digit comparison tasks 
were analyzed by two separate 3 (group) × 2 (distance) 
mixed ANCOVAs with Raven’s test and reading as 
covariates.

On the one-digit task, the ANCOVA yielded a significant 
distance effect, F(1, 72) = 4.50, p = .037, partial η2 = .06 
(Distance 1: M = 0.94; Distance 4–5: M = 0.79), and a sig-
nificant group effect, F(2, 72) = 11.64, p < .001, partial η2 = 
.24, but no group by distance interaction (p > .05). On the 

two-digit task, only a significant group effect emerged, F(2, 
72) = 9.26, p < .001, partial η2 = .20, not a distance effect or 
interaction effect (p > .05). However, when excluding IQ 
and reading from the ANOVA, an effect of distance 
emerged, F(1, 74) = 10.21, p = .002, partial η2 = .12 
(Distance 1: M = 1.28; Distance 5: M = 1.21), but not an 
interaction effect (p > .05). Post hoc tests showed that the 
AFD group and the GD group performed the one-digit and 
two-digit comparison tasks slower than did the controls.

To examine if the significant effects of group on the digit 
comparison tasks remained after controlling for IQ, read-
ing, and scores on the one-digit and two-digit naming tasks, 
two additional ANCOVAs were performed. The two 
ANCOVAs revealed that the AFD and GD groups still per-
formed slower than the TA group on the one-digit task, F(2, 
71) = 7.04, p = .002, partial η2 = .16, and the two-digit task, 
F(2, 71) = 9.77, p < .001, partial η2 = .21.

Problem Size Effect

To check if the three groups demonstrated the classical 
problem size effect to the same degree, an additional 3 
(group) × 2 (one-digit vs. two-digit numerals) mixed 
ANCOVA with IQ as a covariate was performed (i.e., group 
× interactions) on the overall performance of the one-digit 
and two-digit comparison tasks (see Table 2). A significant 
problem size effect, F(1, 73) = 4.61, p = .03, partial η2 = .06, 
was obtained, as was, more important, a significant group × 
problem size interaction effect, F(2, 73) = 6.71, p = .002, 
partial η2 = .16.

To further examine the interaction, a problem size effect 
measure was calculated for each child by subtracting the 
performance on the one-digit task from the two-digit task. 
An ANCOVA with Raven’s test as a covariate and post hoc 
testing performed on this measure revealed that the AFD 
group and the GD group displayed a larger problem size 
effect, F(2, 73) = 6.72, p = .002, partial η2 = .16, than the 
controls (see Table 2). Thus, the AFD and GD groups were 
more influenced by the numerical size of the digits than the 

Table 2. Descriptive Data for the Number Processing Task for the AFD Group, the GD Group, and the TA Group.

AFD GD TA

 M SD M SD M SD

Nonsymbolic number discrimination 1.47 0.61 1.71 0.94 0.95 0.24
One-digit naming 34.81 7.67 40.53 16.61 27.63 5.17
Two-digit naming 61.38 17.76 72.97 25.92 44.37 10.00
One-digit magnitude comparison 0.95 0.28 0.98 0.17 0.66 0.11
Two-digit magnitude comparison 1.38 0.44 1.46 0.40 0.91 0.14
Problem size effect 0.43 0.22 0.48 0.34 0.25 0.09
Number line estimation (error) 9.22 5.27 12.48 5.88 4.47 2.22

Note. AFD = arithmetic fact dyscalculia; GD = general dyscalculia; TA = typical achievers.
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TA group. However, the larger problem size effect displayed 
by the AFD and GD children disappeared when controlling 
for reading as well as IQ (p > .05).

Number Line Estimation

An ANCOVA with Raven’s test and reading as covariates 
demonstrated a significant group effect, F(2, 72) = 6.71, p = 
.002, partial η2 = .16, that was a result of higher percentage 
absolute error scores of the AFD and the GD groups com-
pared to the TA group. The number line estimation task taps 
the symbolic mental number line, founded on the ANS, but 
it also taps the symbolic system and the mapping between 
the two systems (Geary et al., 2007; LeFevre et al., 2010; 
Piazza, 2010; Siegler & Opfer, 2003). Hence, an additional 
ANCOVA with the overall performance of the one-digit and 
two-digit comparison tasks included as covariates was per-
formed to examine if the poorer performance of the AFD 
and GD groups remained after controlling for the influence 
of symbolic number system and the mapping between the 
systems as well as IQ and reading. The ANCOVA with the 
overall digit comparison measure revealed that the GD 
group still performed poorer than the TA group, whereas the 
AFD group now performed on a par with the TA group, F(2, 
71) = 4.36, p = .016, partial η2 = .11.

Discussion

In the present study, the defective ANS hypothesis and the 
access deficit hypothesis were tested in children with differ-
ent mathematical deficits: AFD and GD. The aim was to 
gain a more comprehensive understanding of DD by inves-
tigating if the underlying origins of DD in children with 
different profiles of mathematical deficits are the same or 
different. The results are discussed using the two hypothe-
ses in turn as a platform, followed by a conclusion.

Children With GD Have a Deficit in the Innate 
Approximate Number System

The defective ANS hypothesis is premised on the notion 
that humans are born with a preverbal ability to represent 
quantities approximately and that this ability constitutes the 
foundation for development of the symbolic number system 
used for arithmetic (e.g., Butterworth, 1999; Feigenson et 
al., 2004; Piazza, 2010). Thus, the defective ANS hypothe-
sis predicts that both nonsymbolic and symbolic number 
processing is implicated in DD, and the behavioral pattern 
displayed by the GD group on the nonsymbolic number 
task, the digit magnitude comparison tasks, and the number 
line estimation task is congruent with this notion.

Very direct and strong support for the ANS hypothesis is 
demonstrated by the GD group’s significantly slower per-
formance on the nonsymbolic discrimination task, even 

when controlling for IQ, reading, and speed of access to 
long-term memory information (color naming). This find-
ing is consistent with earlier work on DD (cf. Landerl et al., 
2009; Mazzocco et al., 2011; Mejias et al., 2012; Mussolin 
et al., 2010; Piazza et al., 2010; Price et al., 2007). Further 
support for the ANS hypothesis is provided since perfor-
mance on the one- and two-digit comparison tasks was sig-
nificantly slower in the GD group even when controlling for 
IQ, reading, and scores on the one-digit and two-digit nam-
ing tasks, which would control for the influence of the sym-
bolic number system. Another interesting aspect of this 
symbolic comparison task is that children with GD showed 
a larger problem size effect than the TA children, indicating 
that they have noisier number representations (i.e., inferior 
ANS acuity).

Another important finding in line with the defective 
ANS hypothesis is that the GD group performed signifi-
cantly worse than the TA group on the number line estima-
tion task, even when controlling for influence of the 
symbolic system and the mapping between the ANS and the 
symbolic number system by including digit comparison 
performance as a covariate as well as IQ and reading (Geary 
et al., 2007; LeFevre et al., 2010; Piazza, 2010; Siegler & 
Opfer, 2003). The number line estimation task requires that 
participants translate between numerical and spatial repre-
sentations, and the task measures the linearity and sophisti-
cation of the mental number line of the participants (Siegler 
& Opfer, 2003). In its original form, it is believed to tap into 
several abilities, such as the ANS, the symbolic system, and 
spatial abilities that together are responsible for the map-
ping process and the subsequent mental number line forma-
tion (Von Aster & Shalev, 2007). By controlling for IQ, 
reading, and symbolic processing, we isolated the effect of 
the ANS and compared between groups; the GD showed 
weaker performance, indicating that ANS is implicated in 
this subgroup of DD. Thus, on a neurocognitive level, it is 
likely that this subgroup has a primary deficit in the IPS 
resulting in a deficit in the ANS on the cognitive level, 
which then affects many areas of number processing. For 
instance, it is possible that this deficit subsequently affects 
symbolic number processing by corrupting the mapping 
process between the nonsymbolic and symbolic systems, 
because the symbols are mapped onto the already under-
mined nonsymbolic system, yielding the impaired perfor-
mance on the symbolic number comparison task. One 
should, however, be careful in drawing firm conclusions 
about the direction of causation since it is also conceivable 
that impaired ANS acuity is the result of a deficient sym-
bolic and exact manipulation of numbers, which is an idea 
advocated by Noël and Rousselle (2011). Other research 
suggests otherwise, however, where research on preverbal 
infants and ANS acuity shows that infants who made finer 
nonsymbolic number discriminations at 6 months of age 
also showed superior and sharper ANS acuity at 9 months 
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of age (Libertus & Brannon, 2010). Also, Mazzocco et al. 
(2011) found that ANS acuity at age 3 or 4 years is predic-
tive of standardized math scores at ages 5 or 6, thereby 
showing an association between ANS acuity and math pro-
ficiency prior to any formal math instruction where children 
would supposedly be exposed to symbolic and exact num-
ber systems that, in turn, would affect and weaken the ANS 
acuity. It is also plausible that ANS acuity and mathematical 
experience have a bidirectional relationship, but that ANS 
deficits probably precede symbolic number processing 
impairments and subsequent mathematical difficulties.

Nevertheless, together these three findings indicate that 
children with GD have impairment in the acuity of the ANS 
(Landerl et al., 2009; Mazzocco et al., 2011; Piazza et al., 
2010). Thus, a fuzzy or less precise ANS should make it 
more difficult to discriminate between sets of numerosities 
and magnitudes activated by the symbols (i.e., Arabic num-
bers) and impede the acquisition and learning of adequate 
basic arithmetic skills such as multidigit calculation and 
arithmetic fact retrieval (Dehaene, 1992, 2011; Feigenson et 
al., 2004; Piazza, 2010). The behavioral pattern displayed 
by this subgroup matches the profile of primary DD (Price 
& Ansari, 2013) and other conventional notions of DD, 
which is a condition with a core deficit in the innate number 
sense (Dehaene, 2011; Piazza, 2010). It is also congenial 
with Butterworth (2005) and numerosity coding, which is 
also a cognitive component responsible for the cognitive 
representations of numerosities akin to the ANS.

Most studies that have found a deficit in nonsymbolic 
number processing in children with DD have done so in 
children between 8 and 10 years of age (e.g., Landerl et al., 
2009; Piazza et al., 2010), and only a few have done studies 
on older children with DD (e.g., Mazzocco et al., 2011). 
The children in our study were 11 to 13 years old, thus 
showing that the ANS deficit found in younger children 
with DD in previous research also applies to slightly older 
children as well.

Children With AFD Have an Access Deficit

The main prediction of the access deficit hypothesis is that 
individuals with DD will display difficulties on symbolic 
number tasks while showing entirely intact nonsymbolic 
number processing. With respect to the AFD group, this is 
exactly what the current findings demonstrate: The AFD 
group showed poor performance compared to the TA group 
on the two-digit comparison tasks, but they performed on 
par with the TA group on the nonsymbolic number discrimi-
nation task, which is completely in line with the aforemen-
tioned hypothesis. Furthermore, the AFD group performed 
significantly worse than the TA group on the number line 
estimation task when not controlling for the influence of the 
symbolic system and the mapping between this system and 
the ANS. However, when including digit comparison 

performance as a covariate, the AFD group performed on 
par with the TA group, suggesting that their poorer perfor-
mance is primarily due to impairment in the connection 
between symbolic numbers and magnitude representations 
(De Smedt & Gilmore, 2011; Desoete, Ceulemans, De 
Weerdt, & Pieters, 2012; Landerl & Kölle, 2009; Noël & 
Rousselle, 2011; Rousselle & Noël, 2007).

These findings regarding children with AFD favor the 
access deficit hypothesis but are not consistent with the 
defective ANS hypothesis. It is theoretically plausible that a 
deviant connection between the symbolic number system 
and the ANS could hamper the retrieval of arithmetic facts 
established in semantic long-term memory as it has been 
shown that fact retrieval first entails a symbol identification 
stage, followed by a digit magnitude comparison stage and 
finally a retrieval stage (Butterworth, Zorzi, Girelli, & 
Jonckheere, 2001). Theoretically, the digit comparison 
stage, which constrains the connection between the sym-
bolic system and the ANS, could indeed constitute a bottle-
neck for children with AFD during arithmetic fact retrieval. 
Various neuroimaging studies indicate that children with 
DD display structural differences in terms of loss of gray 
matter volume in the IPS and frontal areas (Kaufmann, 
Wood, Rubinsten, & Henik, 2011) but also white matter 
tracts that connect these areas and likely play a role in the 
mapping process between symbols and their semantic con-
tent (Nieder, 2009). This pathophysiology would be conge-
nial with the findings of Rousselle and Noël (2007) and 
their access deficit hypothesis. Another possibility is that 
the parietal circuit connecting the IPS with angular gyrus is 
damaged since the angular gyrus is thought to subserve 
skilled arithmetic fact retrieval (Dehaene, Piazza, Pinel, & 
Cohen, 2003; Zamarian, Ischebeck, & Delazer, 2009). Price 
and Ansari (2011) noted that merely glancing at Arabic dig-
its elicited stronger activation in the angylar gyrus com-
pared with nonsensical symbols, and Ansari (2008) 
suggested that the angylar gyrus subserves automatic map-
ping between mathematical symbols and their semantic ref-
erents. Moreover, gains of arithmetic competence and 
expertise have reflected a shift from frontal areas to more 
posterior ones, as well as a shift from IPS to angular gyrus, 
probably reflecting increased reliance on rapid access to 
arithmetic facts, rather than laborious calculation proce-
dures (Zamarian et al., 2009). Individuals with this particu-
lar pathophysiology may not display any problems with 
working memory tasks due to their potentially intact and 
unaffected IPS and/or prefrontal areas more traditionally 
thought of as integral to working memory processing and 
numerical processing (Rubinsten & Henik, 2009). A neuro-
cognitive deficit originating in the parietal circuit connect-
ing the IPS and angular gyrus would therefore also be in 
line the access deficit hypothesis.

The considerations concerning the neurocognitive 
underpinnings responsible for the observed behavioral 
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deficits in the current study are speculative, but by taking 
different studies across levels of analysis (i.e., cognitive 
level, neurological level, etc.) into account, one might arrive 
at testable hypotheses. Hence, given that we have identified 
different subgroups of children with DD, each with their 
own cognitive profile, and providing support for De 
Visscher and Noël’s (2013) proposed subtype of DD, the 
next step would be to investigate these subgroups using 
neuroimaging data to verify this categorization. The results 
from the current study also emphasize the need for careful 
deliberation when choosing which selection criteria to use 
when identifying children with DD to ensure that different 
subtypes of DD are not conflated, thereby obscuring the 
genuine underlying pathophysiologies. For instance, if we 
had adopted a selection procedure that exclusively relied on 
an arithmetic fact retrieval task to identify children with 
“pure” DD, as some researchers have done previously (e.g., 
Landerl et al., 2004; Mussolin et al., 2010), we would have 
mistakenly conflated both GD and AFD into a single het-
erogeneous sample of children that would have obscured 
the etiologies within that group. In addition, we used quite 
strict selection criteria, where children in the GD group per-
formed at or below the bottom 5th percentile on both arith-
metic tasks, and we believe that by using stringent cutoffs 
(below 10th percentile) a more homogeneous subgroup of 
children with mathematical difficulties is revealed, and that 
using more lenient criteria (11th–25th percentile) may lead 
to conflation of children with DD with low achievers of 
mathematical skills (Mazzocco et al., 2011). Mazzocco et 
al. (2011) found that low achievers did not differ from TA 
children on ANS tasks and that only children with pervasive 
DD (< 10th percentile) showed a weaker ANS acuity com-
pared to low achievers (11th–25th percentiles), TA children 
(25th–95th percentiles), and high achievers (> 95th percen-
tile). It is therefore likely that using more lenient cutoffs 
may result in heterogeneous samples with different cogni-
tive profiles, which in turn makes it hard to identify the 
pathophysiology of DD and its subtypes.

Another important aspect to keep in mind when identify-
ing children with DD is to carefully consider the actual 
screening tests used. Several of the studies on DD have 
employed a quite broad and complex amalgam of tests 
assessing mathematical skills, where aggregated perfor-
mance on a multitude of tasks is used as a general measure 
and indicator of mathematical skill from which a variable 
bottommost percentile is estimated to suffer from DD (e.g., 
D’Amico & Passolunghi, 2009; Geary et al., 2008; Piazza 
et al., 2010). For example, Piazza et al. (2010) used Arabic 
number reading, Arabic number writing, number repetition, 
symbolic number discrimination, number insertion, arith-
metic calculation, arithmetic fact retrieval, oral calculation, 
and complex written calculation to yield a composite mea-
sure of math ability. Although this approach of casting a 
wide net may be highly effective in identifying children 

with mathematical difficulties, which is certainly desirable 
in many circumstances, it also enables the possibility that 
some children with different strengths and weaknesses in 
mathematical or cognitive skill may be able to avoid being 
identified altogether by relying on individual strengths and 
through compensatory abilities make the cutoff in the end. 
For example, in the number repetition task employed by 
Piazza et al. (2010), children with superior phonological 
skill and auditory working memory capacity may excel at 
this task while showing poor number discrimination ability. 
Nevertheless, the use of complex test batteries of arithmetic 
ability likely invites heterogeneity. In our study we used 
only two quite simple arithmetic tasks to identify children 
with DD. We do not claim that our procedure is superior to 
the aforementioned ways of estimating mathematical skills, 
but we want to raise awareness that the choices made will 
have implications regarding the population of children who 
ultimately will—or will not—make the cut.

The findings from the current study may also have impli-
cations for practitioners in the educational setting. Given 
that we have identified subtypes of DD, it is likely that dif-
ferent interventional instruments should target different 
subtypes. Children who struggle with rapid retrieval of 
arithmetic facts often do not substantially improve across 
early school years (Geary, 2004), but some children may 
benefit from practice on time-constrained retrieval of arith-
metic facts that forces them to not fall back on laborious 
counting strategies (Gersten, Jordan, & Flojo, 2005). 
Gersten et al. (2005) suggested that teaching children 
backup strategies, such as resorting to known nearby arith-
metic facts to arrive at an answer, may be productive. 
Children with GD, on the other hand, may need interven-
tions that target their specific deficits, namely the ANS, 
subserving the development of a mental number line. These 
aspects of number sense should be teachable (Gersten et al., 
2005), and promising research indicates that the ANS is 
malleable (DeWind & Brannon, 2012). Feedback training 
improved adults’ ANS acuity and numerical precision, 
although it remains an open question whether this improve-
ment would transfer to other mathematical domains 
(DeWind & Brannon, 2012), and recent work by Park and 
Brannon (2013) found that training of the ANS actually 
improved math proficiency in adults, suggesting that inter-
ventions targeting the ANS could benefit children with GD. 
In the same vein, Feigenson, Libertus, and Halberda (2013) 
suggested that increased ANS acuity may serve as a useful 
aid during symbolic computations, which may allow chil-
dren to detect gross errors and arrive at reasonable answers 
during problem solving.

Although we have tried to emphasize the heterogeneity 
and complexity of dyscalculia, there is most certainly a neu-
rocognitive profile that can be labeled “pure” DD where 
number sense is the primary and circumscribed deficit, but 
this neurocognitive profile is most likely applicable to only 
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a minority of children with DD, where multiple cognitive 
deficits such as attention deficits, executive functioning, or 
reading difficulties are often simultaneously manifest in 
these children. We suggest that the heterogeneity of symp-
toms and difficulties, as well as the screening procedures 
used to detect them, need to be taken into account in future 
research.

Conclusion

The current study provides evidence demonstrating that the 
origins of DD in children with different profiles of mathe-
matical deficit diverge. Children with GD have impairment 
in the ANS, whereas children with general AFD suffer from 
an access deficit, that is, a deficit in the connection between 
the symbolic number system and the innate ANS. This find-
ing is consistent with Rubinsten and Henik’s (2009) pro-
posal that DD might be caused by several different 
pathophysiologies, that in parallel give rise to deficient 
number processing in a given individual, or that different 
individuals display different neurocognitive profiles that 
give rise to the unique mathematical symptoms. We urge 
researchers within the field to carefully select which screen-
ing procedures to use, with respect to both cutoff criteria 
and tests of arithmetic abilities.
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